Primitive $\alpha $-abundant numbers
نویسندگان
چکیده
منابع مشابه
On Totient Abundant Numbers
In this note, we find an asymptotic formula for the counting function of the set of totient abundant numbers.
متن کاملΝοτε Ον Consecutive Abundant Numbers
A positive integer N is called an abundant number if σ(N) > 2N, where σ (N) denotes the suns of the divisors of N including 1 and N. Abundant numbers have been recently investigated by Behrend, Chowla, Davenport , myself, and others ; it has been proved, for example, that they have a density greater than 0 . I prove now the following THEOREM. We can find two constants c l , c 2 such that , for ...
متن کاملLeast primitive root of prime numbers
Let p be a prime number. Fermat's little theorem [1] states that a^(p-1) mod p=1 (a hat (^) denotes exponentiation) for all integers a between 1 and p-1. A primitive root [1] of p is a number r such that any integer a between 1 and p-1 can be expressed by a=r^k mod p, with k a nonnegative integer smaller that p-1. If p is an odd prime number then r is a primitive root of p if and only if r^((p-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1984
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1984-0744936-x