Primitive $\alpha $-abundant numbers

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Totient Abundant Numbers

In this note, we find an asymptotic formula for the counting function of the set of totient abundant numbers.

متن کامل

Νοτε Ον Consecutive Abundant Numbers

A positive integer N is called an abundant number if σ(N) > 2N, where σ (N) denotes the suns of the divisors of N including 1 and N. Abundant numbers have been recently investigated by Behrend, Chowla, Davenport , myself, and others ; it has been proved, for example, that they have a density greater than 0 . I prove now the following THEOREM. We can find two constants c l , c 2 such that , for ...

متن کامل

Least primitive root of prime numbers

Let p be a prime number. Fermat's little theorem [1] states that a^(p-1) mod p=1 (a hat (^) denotes exponentiation) for all integers a between 1 and p-1. A primitive root [1] of p is a number r such that any integer a between 1 and p-1 can be expressed by a=r^k mod p, with k a nonnegative integer smaller that p-1. If p is an odd prime number then r is a primitive root of p if and only if r^((p-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1984

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1984-0744936-x